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Efficiency Loss
with the Kaplan-Meier Estimator

by

Myles Hollander, Frank Proschan, and James Sconing

ABSTRACT

We consider the proportional hazards model where the distribution G of the
censoring random variable is related to the distribution F of the lifetime ran-
dom variable via (1-G)=(1- F)B. Nonparametric estimators of F are developed
for the case where B is unknown and the case where 8 is known. Of interest in
their own right, these estimators also enable us to study the robustness of the
Kaplan-Meier estimator (KME) in a nonparametric model for which it is not the
preferred estimator. Comparisons are based on asymptotic efficiencies and exact
mean square errors. We also compare the KME to the empirical survival function,
thereby providing, in a nonparametric setting, a measure of the loss in effi-

ciency due to the presence of censoring.
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1. INTRODUCTION

In the usual censorship model we wish to estimate a life distribution
F(x) =P(X<x) when lifelengths xl, xz. cavs xn, independent and identically dis-
tributed (i.i.d.) from F are under censorship by Yl, cees Yn‘ i.i.d. from cen-
soring distribution G, xi and Yi are mutually independent for i=1, ..., n and
F and G are continuous with densities f and g which are strictly positive on
[0, ®). The actual observations consist of (Zi, Gi), i=1, ..., n, where
Zi=min(xi, Yi) and Gi= I(xisYi) where I(A) is the indicator function of the
set A.

As an estimator of the survival function S(t) =1 - F(t), the Kaplan-Meier

(1958) estimator (KME) has received considerable attention. It is defined as

Srs
nstci’(‘l) I(Z(n)zt), te (0, «), (1.1)

1)

8.(t) =
L
e | . .
where in (n-i)(n-1i+1) °, 2(1) <... <Z(n) are the ordered Zi s, and G(i) is
the 8 corresponding to Z ()" The product over an empty set is defined to be
zero. Some authors (cf. Wellner 1985) use a slightly different version of the
KME defined by
5= 1 cfll), te(o, «). (1.2)
in
Z,.\5t
(i)

Equation (1.2) differs from (1.1) on [Z(n), o) if G(n) = 0. While (1.1) is
always zero on [Z(n)’ ), (1.2) is strictly positive there if G(n) =0 and thus
in some samples §K is not a true distribution function.

The KME has been studied in great detail. Weak convergence has been studied
by Efron (1967), Breslow and Crowley (1974), Meier (1975), Gill (1983), and

Wellner (1985). Strong consistency was established by Peterson (1977) and
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Langberg, Proschan, and Quinzi (1980). Optimality properties were established
by Wellner (1982). Small-sample properties have been studied by Chen, Hollander,
and Langberg (1982), and Wellner (1985). Most of the properties developed in
these papers require only minimal assumptions (e.g., continuity of F and G).
The KME is also the generalized maximum likelihood estimator, These properties
along with the ease of computation, ease of interpretation, and easily estimated
asymptotic variance (Greenwood's formula) have made the KME standard for esti-
mating-S(t).
Miller (1983) terms the KME "seductive' in that it is very tempting to use.
% He studies the KME's efficiency loss when compared to the maximum likelihood
estimate (MLE) in parametric models. Emoto (1984) compares the KME with
; parametric MLE's on the basis of mean square error. She considers both the case
when the parametric model is correctly specified and the case when it is mis-
specified, Not surprisingly the KME performs poorly compared to MLE's in a
fully parametric setting. For example for F and G exponential, Miller (1983)
shows that the asymptotic efficiency of the KME with respect to the MLE tends to

zero as t + 0 and as t + o,

We study the properties of the KME by considering the proportional hazards
model which lies between the parametric model and the fully nonparametric model.
The proportional hazards model is nonparametric in the sense that F is unknown,
but it possesses more structure than the fully nonparametric model assumed for
the KME. By considering the proportional hazards model we can see how well the
KME performs in a setting for which it is not optimal, thus investigating its
robustness. Furthermore, our efficiency results in conjunction with those of
Miller (1983) and Emoto (1984) allow us to determine the degree to which the
KME efficiency losses are due to (1) full parametrization of the distribution

of X and Y and (2) the presence of additional structure governing X and Y.
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b The proportional hazards model is:
Li Definition 1.1. (X, Y) follows a proportional hazards model if for some
‘
2 8>0,
i
N 1-6(t) = (s(t)}®, te (0, =). (1.3)
&
ii Expression (1.3) is equivalent to
X ‘
2 Rg(t) = BRy(t), te (0, =), (1.4)
g where RF(t)= - logS(t), Rc(t)= - log(l - G(t)), the cumulative hazard functions
B of F and G respectively.
&
.ﬁ Proportional hazards has been used in censored models in the past. Efron
é! (1967) uses the special case of exponential random variables to compare effi-
' ciencies for various two-sample tests. Koziol and Green (1976) derive a Cramer-
- von Mises statistic for testing a goodness-of-fit hypothesis that F==FO, Fy
[ completely specified. Csorgg and Horvath (1984) improved upon the Koziol-Green
R
) test in that Koziol and Green required that B be known whereas Csorgl and Horvath
2at
h do not need this assumption. Chen, Hollander, and Langberg (1982) and Wellner
[/
P, (1985) use proportional hazards to compute moments of the KME. Chen, Hollander,
. and Langberg use the form of the KME listed in (1.1) while Wellner uses (1.2).
E . In Section 2 we develop an estimator §P (2.3) for estimating S in the pro-
'3 portional hazards model when 8 is unknown. We compare §P with the KME in terms
' of asymptotic efficiency, exact bias and exact mean square error. In Section 3
—~
? we advocate the maximum likelihood estimator SP (3.1) of S in the case of pro-
. portional hazards when B is known. One efficiency result is that the asymptotic
N efficiency of the KME with respect to the MLE is (8-01)'1. Since (84-1)-l is
-
; equal to P(X<Y), this is a readily interpretable measure of efficiency. In
\!
L
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Section 4 the KME is compared with the empirical survival function. This com-

parison provides a measure of the efficiency loss due to censoring.

2. PROPORTIONAL HAZARDS, PROPORTIONALITY CONSTANT UNKNOWN

Assume that the proportional hazards model is known to hold. Then the KME

RAS NS ha A

is no longer the generalized maximum likelihood estimator. The extra information

: qn
that 1-G(p) = {S(p)}® should be utilized. Let T =n"' } 6.. Then T is asymp-
i=1
totically normal with mean (8 + 1)'1 =P(X <Y) and asymptotic variance:

/

AV(n} 2'rn) =8{(8+1)"%). (2.1)

Let H(t) be the survival distribution for Z. Then H(t) = {S(t)}?*!. Let

n

Hn(t) =n'1 Z I(Z:.l >t), the usual erpirical survival estimator for H(t). Then
i=1

A(t) =n1/ 2{ﬁn(t) - H(t)} converges weakly to a Gaussian process with mean 0 and

covariance structure, for s<t, given by

Cov{A(s), A(t)} ={1-H(s)}H(t) for 0<s<st<w, (2.2)
Now our goal is to estimate S(t) = {H(t)}ll (B+1) . A natural choice is
ROE {ﬁn(t)}Tn for t e (0, ). (2.3)

We use the following result of Allen (1963).

Theorem 2.1. The pair (X, Y), 0<P(X<Y) <1, follows the proportional
hazards model if and only if the random variables Z =min(X, Y) and § =I(X<Y)

are independent.

From Theorem 2.1:-it follows that the randonm vectors (Z Zn) and

1 » LI B )
(61, caes 6“) are indépendent under the proportional hazards model. Thus the
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statistics T_and ﬁn(t) are independent. This, together with (2.1), (2.2) and
the fact that g(x, y)==xy has first partial derivatives which are continuous at
[{1 - H(t) (D), 8(8*-1)'2] imply that §p(t) converges weakly to a Gaussian pro-
cess (cf. Serfling pg. 124) with mean 0 and asymptotic variance given by, for

te (0, “’)’

1/22

AV{n Sp(t)} =

- ',1 - : +1)
8+ 1) 2y PR B 0 ey ) +818 + 17 3 {10gH(0) ()1 (B*Y) (2.4

or, equivalently,

1/2;

avtn' %5, 001 = 8+ D20 P s e Blogs s @.5)

It is interesting to note that the asymptotic variance of sP may decrease
as B increéses. This is not true of the asymptotic variance of the KME. Fronm

(2.5), we find

1/2;

-‘;% [AV{n Sp(t)-}] =

(2.6)
2208+ 1) 73 P s (012 - 8+ D725 (0) 1 Blogs (t) ¢ 15(t) log S()12.

For 8 in a neighborhood of 1 and t close to 0, the right-hand side of (2.6) is
less than zero. It seems counterintuitive that an estimator should improve as
censoring increases. However, note that when 8 is close to 1, the distribution
of Y is almost the same as that of X. Consequently observing Y is almost as
informative as observing X. Thus this result is not surprising after all.

Note that the estimator in (2.3) junps at both the observed X's and the

observed Y's. Ebrahimi (1984) proposed an estimator in the proportional hazards

model which jumps only at the observed X's. Also note that the estimator in
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T A

(2.3) drops to zero after Z(“) with one exception. In the case where Tn==0,
§P(t)s 1. In this pathological case our estimate for B is infinite.
¢ §P is also strongly consistent. Note that ﬁn(t)a4s'ﬂ(t) and Tna4s'T by

K the strong law of large numbers. Since g(x, y) =x’ is a continuous function,
8p(8) 15 (e 1) L sy 101 - 63 B D s 9y "8/ (B°1),

If the proportional hazards model holds then the term ¢(t) =
[{1-G(t)}l/(8+1){5(t)}'8/(B+1)] reduces to 1. If the proportional hazards model
does not hold then the term ¢(t) is a contaminating factor. The error in the

. estimator then depends on how far ¢(t) diverges from 1.

From (2.4) it is seen that the asymptotic variance can be estimated by

¢ A% 0y =P AT L 1a - Hee B2 ESH T,

) for Z(i)s t< Z(i+1)' This holds only for t« Z(n). Note also that if g=0, (2.4)
reduces to S(t){1-S(t)}, the asymptotic variance of the usual empirical sur-

vival function.

d To compare éP with the KME, the asymptotic variance for the KME under the
\ proportional hazards model must be computed. The estimator SK(t) is asymptoti-
'

E cally normal with asymptotic variance (cf. Miller, 1981):

X avin!/ % MO {S(t)}zfo ‘;FL“) . 2.7)
3 {S(uW1°{1-G(u)}

. 1f 1-G=5° then (2.7) reduces to

f awvin% (1= 8+ ) s Prismy B ). (2.8)

The ratio of (2.5) to (2.8) is then

a,(0) € eS,, 550 = (8o 17!+ 8B+ 1 (l0gs (1) P[50y BV Lyt

(2.9)

q
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Theorem 2.2. The function ul(t) has the following properties:

i) lima ()= (8+1)7),
t+0

i) limo ()= B+ 1L

t+oo

iii) a (1) 2 (8+ DY 0<t <o,

Proof: (i) Use L'Hospital's rule on the second term in (2.9) to obtain

g+1)

lima, (t) = (B+ 1)'1 + 1im - 2p{log S(t)HS(t)} ( = (B + 1)'1.

t+0 t-+0
(ii) Use L'Hospital's rule twice on the second term in (2.9) to obtain

lima &) = (8 + 1)'1 + lim -28{(B + 1)-1}{S(t)} 8+, (B + 1)'1-

to+> t>rwo

v

(iii) Note that the second term in (2.9) is always positive. ||

o
‘-“1-1

>~
x &

X

Table 1 gives some values for al(t) for X exponential with parameter 1 and
Y exponential with parameter g. Note that the values for al(t) initially in-
crease and then decrease. The value of t for which this change occurs is given
by the solution to the equation (8+ 1)t=2[1-exp{-t(B+1)}]. Table 1 also
suggests that al(t) decreases as B increases. P increasing is equivalent to
censoring increasing stochastically. Thus Table 1 suggests that the efficiency
of the KME with respect to ép decreases as censoring increases stochastically.
We have been unable to prove this.

While Table 1 gives values for X and Y exponential, these values hold for
any proportional hazards model. Consider the random variables R(X) and R(Y),
where R(-) is the cumulative hazard function. Then R(X} and R(Y) are exponential

random variables with parameters 1 and B respectively. To find the efficiency
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of the KME with respect to ép(t) for this case, compute R(t) and use Table 1
with R(t) in place of t.

A Finite sample comparisons can also be made using the method of Chen,
Hollander, and Langberg (1982). These authors compute bias and variance for the
KME under the proportional hazards model. Wellner (1985) does the same using

(1.2) rather than (1.1). These methods can also be applied to §p. This gives

A a-
E(Sp(td}"= (2.10)
n n . . . . .
: LG e e T DAt FRTETE5) Ly ERR(C RV Sl T CR DI
K j=0 k=0

We use (2.10) to calculate bias and mean square error for §p(t) when X and
Y are exponential with parameters 1 and g respectively. Table 2 gives numerical
values for bias and mean square error for §K(t), §K(t), and §p(t). The values
for SK and §K are obtained from Wellner (1985). From Table 2 we see that §p is
biased high; in fact, its bias exceeds that of both KME's. This is perhaps due
to the pathological case T=0. The mean square error however is typically small-
er than that of the KME, particularly when B=t=2.0. The cases for which the

mean square error of the KME is smaller seem to correspond to the cases for which

Az Al

the bias of §P is large compared to that of the KME. The mean square error and
bias for SP tend to increase in B and decrease in n. (An exception occurs in
the bias values for =t =2.0.) The values for the general proportional hazards

case can be obtained, as previously seen, by considering exponential variables

with R(t), the hazard rate, taking the place of t.

..............
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) 3. PROPORTIONAL HAZARDS, PROPORTIONALITY CONSTANT KNOWN
\
E Suppose the proportional hazards model is known to hold with B known. In
N this case an estimator analagous to §P is:
A
4 §p(t) = {f_(t) }Y for te (0, =). (3.1)
) . R
; where y= (8+1) 1 and Hn(t) is the empirical estimator for the Zi's.
| It follows (Zehna, 1966) that §P(t) is the maximum likelihood estimator for
’ S(t). Further, analagous to Section 2, if the model is correctly specified, §P(t)
it is strongly consistent:
§,(0) %5 s(e) [{1- (1)1 (B* D5 (2)y B/ (B* Dy o g(ey |
If the proportional hazards model does not hold or if g is misspecified, then
§P(t) will not converge to S(t) and the error depends on how much the term
: (1 -6(t) 1/ B* D0y B/ (B* 1)y 4ierers from 1.
+ The estimator §P converges weakly to a Gaussian process with mean S(t) and
asymptotic variance given by:
avin!/ %5, ()3 = 8+ 1 2y O/ B D gy (3.2)
or, equivalently,
y avtn/%, (01 = 8+ D 2P - s 1P, (3.3)
)
w
! From (3.2) the asymptotic variance can be estimated by
b
1 s 1'8 .
v A - -2 -
Nl = e 020D T,
4
!
. for Z(i) <t <Z(i+1)' i=1, ..., n-1. Again the estimator jumps at both failure
[~ times and censoring times. To compare §P with the KME, compute the ratio of

)
)
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(3.3) to (2.8). This yields:
e

az[t) d-—-fe(éx, ép) = (B + 1)-1, independent of t.

Note that e(§K, §P) decreases as B increases. Recall from Theorem 2.2 that

(B*-l)"1 is also the value of o, (t) at both extremes of t. Note that (B+ 1)-1
P(X <Y) and this represents the proportion of values for which a failure occurs.
Recall that §P jumps at both the observed failure times and the observed cen-
soring times while §K jumps only at the observed failure times, n+P(X<Y) in

expectation.

As in Section 2, exact finite sample results can be obtained. Analogous

calculations yield

- n . af(B+1)
ES, (0= [ (&

ple= sy DED L sftlyd. (3.4)
j=0

Bias and mean square error are calculated from (3.4). Table 3 gives the
values for the case X and Y exponential with parameters 1 and B respectively.
The biases for the B known case are higher than for the B unknown case. The
mean square errors are everywhere smaller, sometimes half as small as those for
which B is unknown. Note that §K(t) has the smallest mean square error when
t=1.0 and 8=2.0. However when t=2.0 and 8=2.0, §K(t) does substantially
worse than each of the other competitors with mean square error six times as

great as that of §p. The mean square error and bias of §p decrease with n and

increase with 8.




‘n,'l".‘l_xl'_x ] h . .

2
%5t

- 11 -

4. LOSS IN EFFICIENCY DUE TO CENSORING

When there is no censoring, the KME reduces to the empirical survival func-
tion, the latter being the estimator of choice in the fully nonparametric non-
censored model. Thus by comparing the KME to the empirical survival function,
we obtain, in a nonparametric context, a measure of efficiency loss due to the
presence of censoring.

From (2.7) the asymptotic variance of §E(t) is given by
1/24
AVIn™ TS () k=S (1) {1 - S(1) }. (4.1)

The ratio of (2.7) to (4.1) is then

a4(t) dee(éﬁ, §x) =S(t){1-5(t)}'1]3 dF (u) (4.2)

(SWI1-6w}

az(t) has the following interpretation. Roughly speaking, SK requires
ne e(§E, SK) ctservations in the censored model to do as well as §E does with n

observations from the non-censored model.

Theorem 4.1.

(i) 1lim as(t) =1.
t-+0

(ii)  limag(t) ==,
t+0

(iii) as(t) is increasing in t.

(iv) as(t) increases as censoring increases stochastically.

Proof: (i) We have

lina,(t) = linS(O{F(D)} " [T I IR SR dF (u)

t+0 t+0 {SWIH1-Gw} t+o 0 (swi1-6w}
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Using L'Hospital's rule,

lima () = lin B . in [ -GoHSeA =1
t+0 t+0{1-G(t)HS(t)I°f(t) t=+n
(ii) Let € >0 be given and choose t, such that 1 -G(tl) <¢ for t>t,. Choose
t2 such that S(tl)-S(tz) >(1/2)S(t1). Then
lima,(t) > S(t,){F(t,)} 12— FQ)
tow > . 2 200 a1 (1 -6(w)
-1t dF (u) t -2
3 2S(t,){F(t)} " [2 2 (2/€)S(t,) [ 2 (S(u)} “{-dS(u)}
X 22 1 {S(u) 12{1 - 6(u)} 2y
N 2 (25(t,) /e IS |52) = (a5t ) /e iis(e)r - tse )y et
g 2 t) 2 2 1 :
& (i) 4 ()=
| S(OEOFO1-6()Hse) e [T 4 () [E(t) (F(t)} %)
| {S(u)} {1-G(u)}

= €SO -6N - Fe)r ! [ S
{S(uw}{1-G(u)}

L4

5

[}

3 which is positive if

F)Y 16008 [ 4F () <1. (4.3)
I {s(w}{1-G6(u)}

% |

«Y .

W The right-hand side of (4.3) is less than

& -1 t -2 -1 t

b {(F(©)} 's(2) [y -(s(w)} “ds(u) = {F()} "S()[{S(w)} |1 =1.

N

N (iv) Note that if censoring increases stochastically, 1 -G(t) decreases for

every value of t. This implies that a(t) is increasing. ||
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These results indicate that when t is small, censoring is not very critical,
but as t increases the censoring has more influence. Consequently for function-

als of S(t) which involve large values of t, the KME must be used with caution.

Acknowledgement: We gratefully acknowledge Edsel Pena for checking the effi-

ciency expressions and the bias and mean square error calculations.
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Table 1, Asymptotic Efficiency of §, with Respect
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to §P under Proportional Hazards with B8 Unknown.
.1 o2 1/3 .5 1,0 2.0
.1 .9186 .8522 .7812 .7130 .5903 .5048
.2 .9270 .8687 .8082 .7524 .6627 .6253
o3 .9344 .8832 .8313 .7854 .7189 .7033
.4 . 9409 .8957 .8509 .8126 .7611 .7471
.5 .9466 .9063 .8672 .8345 .7910 .7642
.6 .9515 .9153 .8806 .8516 .8103 .7611
.7 .9556 9227 .8911 .8645 .8208 .7436
.8 .9590 .9286 .8993 .8736 .8238 .7164
.9 .9618 .9333 .9052 .8793 .8208 .6835
1.0 .9640 .9368 9091 .8821 .8130 .6477
1.1 .9656 .9392 9113 .8824 .8016 .6114
1.2 .9668 .9406 .9119 .8805 .7873 .5760
1.3 .9676 .9412 9112 .8769 7712 .5428
1.4 .9679 L9411 .9093 .8718 .7538 .5124
1.5 .9679 .9403 .9065 .8655 .7358 .4850
1.6 .9676 .9389 .9028 .8582 .7176 .4608
1.7 .9670 .9370 .8985 .8502 .6996 .4397
1.8 .9662 .9347 .8937 .8417 .6820 .4215
1.9 .9651 .9320 .8884 .8329 .6652 .4061
2.0 .9639 .9291 .8828 .8239 .6492 .3930
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